How install from media (IFM) really works (Part 2)

This is the second and last blog post (If someone really cares about the differences for ADAM /AD LDS I can point that out to – just send me and e-mail) that completes a series of posts covering how the “Install from media” feature really works, it’s an in-depth very technical series of posts that explains what happens under the hood and this second post explains the changed regarding to this feature that was introduced with Windows Server 2008 (Most of the changes made are to support RODCs as you will noticed if you counties to read).

Note: This article is Windows Server 2003 Install From Media (IFM) functionality + Changes made in Windows Server 2008 and later (This article doesn’t go through the list of functionality that has been left unchanged from Windows Server 2003 again, therefore I recommend to read part 1 first: How install from media (IFM) really works (Part 1)

Background

Install from media was first introduced in Windows Server 2003, as a solution to improve the installation experience of newly promoted domain controllers in branch offices mainly (or sites with slow-links where the initial replication could take significant time to complete), but it is actually an important component in many disaster recovery plans I have designed for various customers over the years, As it is a fast and efficient way to re-install a domain controller and get it up to sync, (that’s the proper way to handle a faulting replicas/domain controllers in most cases). The feature has been mostly changed in Windows Server 2008 and later to address the new type of DCs – Read Only Domain Controllers to be supported by Install from media (IFM) or as sometimes referred to as rifm, there has also been some improvements in the ability to produce install from media (IFM) without taking a regular backup.

What dose Install from media (IFM) consist of

Install from media (IFM) contains two important things.

  • NTDS.DIT (Active Directory Database) – at the time the IFM is generated (Regardless of Windows Server 2003, Windows Server 2008 or later –the NTDS.dit is pretty much unchanged until DCPROMO makes a lot of changes at the becoming domain controller that takes use of the database – it will change the DSA reference and update related “instance specific” information in the hidden table) – How ever this excepts from rifm’s or Read-Only Domain Controller install from media.
  • SYSVOL (SYSVOL GPT Storage)
  • Registry (Contains the SYSKEY used to decrypt the PEK (also known as Password Encryption Key) that efficiently ensure that the protection for sensitive information stored in the Active Directory database (Such as Password Hashes) are unique to each instance of the database (read each domain controller) –Note: This doesn’t apply to RODCs .

Sourcing install from media (IFM) using System State and VSS

Sourcing the media used by IFM is different in Windows Server 2003 (all versions) and Windows Server 2008 and later, the difference is the technology used to gather information required. Windows Server 2008 and later is using VSS and VSS Writers for NTDS (Active Directory Domain Services) and a Registry VSS writer to source the required information to construct an IFM – Note: the Registry doesn’t apply to RODCs

Table 1: VSS Writers used by install from media

Name

Description

Guid

Registry Writer The registry writer is responsible for the Windows registry. Beginning with Windows Vista and Windows Server 2008, the registry writer now performs in-place backups and restores of the registry. On versions of Windows prior to Windows Vista, the registry writer used an intermediate repository file (sometimes called a “spit file”) to store registry data.

In Windows Vista and later, the registry writer does not report user hives.


The writer ID for the registry writer is AFBAB4A2-367D-4D15-A586-71DBB18F8485.
NTDS Writer Beginning with Windows Server 2003, this writer reports the NTDS database file (ntds.dit) and the associated log files. These files are required to restore the Active Directory correctly.

There is only one ntds.dit file per domain controller, and it is reported in the writer metadata as in the following example:

<DATABASE_FILES path=”C:WindowsNTDS”

filespec=”ntds.dit”

filespecBackupType=”3855″/>

Here is an example that shows how to list components in the writer’s metadata:

<BACKUP_LOCATIONS>

<DATABASE logicalPath=”C:_Windows_NTDS”

componentName=”ntds”

caption=”” restoreMetadata=”no”

notifyOnBackupComplete=”no”

selectable=”no”

selectableForRestore=”no”

componentFlags=”3″>

<DATABASE_FILES path=”C:WindowsNTDS”

filespec=”ntds.dit”

filespecBackupType=”3855″/>

<DATABASE_LOGFILES path=”C:WindowsNTDS”

filespec=”edb*.log”

filespecBackupType=”3855″/>

<DATABASE_LOGFILES path=”C:WindowsNTDS”

filespec=”edb.chk”

filespecBackupType=”3855″/>

</DATABASE>

</BACKUP_LOCATIONS>

At backup time, the writer sets the backup expiration time in the writer’s backup metadata. Requesters should retrieve this metadata by using IVssComponent::GetBackupMetadata to determine whether the database has expired. Expired databases cannot be restored.

If the computer that contains the NTDS database is a domain controller, the backup application should always perform a system state backup across all volumes containing critical system state information. At restore time, the application should first restart the computer in Directory Services Restore Mode and then perform a system state restore.


The writer ID for this writer is B2014C9E-8711-4C5C-A5A9-3CF384484757.

Sourcing install from media (IFM) in Windows Server 2008 and later with NTDSUTIL

Windows Server 2008 introduces a new context in the NTDSUTIL command line tool to give us a built-in tool to produce install from media instead of having us to perform and restore a backup as in Windows Server 2003.

The new context is named “IFM” and is designed to produce install form media IFM for the following cases.

Table 2: NTDSUTIL IFM options

Name

Notes

Source

Destination

Full IFM Note: If the SYSVOL tree is located at the same volume as the database, its log files and/or the registry – it will still be included in the snapshot but not copied into the IFM media.

Note: The NTDS VSS writer is invoked and as a result of this we can see that the ‘state_col’ in the ‘hiddentable’ in the ntds.dit database are changed to 4. This means a status of a Backed up database. This flag is only set if the NTDS VSS Writer is used and not for legacy backups.

This command can only be performed on a full/writable DCs This IFM media can only be used to promote full DCs (Technically unless instanceType is changed recursive on all NCs)
Full IFM with SYSVOL Same as above +

Note: The full SYSVOL tree will be copied to the IFM media, except DfsrPrivate Folders.

This command can only be performed on a full/writable DCs This IFM media can only be used to promote full DCs (Technically unless instanceType is changed recursive on all NCs)
RODC IFM Note: The NTDS VSS writer is passed with a “special” secrets flag in this case, performing a delete of all columns in the database that contains a secret attribute, hidden attribute or an attribute that has been marked as “filtered attribute set” in the schema.

Note: That the PEK (Password Encryption Key) is stored in the “pekList” is not marked secret, (it can’t be as it’s the master key used to protect secret attributes/columns) but it’s rather marked as a ‘hidden attribute’ meaning that we at this state has cleared out the master key for decrypting any other secrets in the DB, however those has just also been cleared so this makes it “safe safe”

NTDSUTIL will remove link values for linked attributes that are marked as “filtered attribute set” in the schema (This is not done by the NTDS VSS writer) and if the command is performed on a full/writable DC all objects including NC heads will recursively change InstanceType – clearing the 0x4 – Write Flag.

Note: In Windows Server 2008 R2 a check is performed against the domain functional level (DFL) and is failing the command if we’re below Windows Server 2003 as DFL with “Can’t produce RODC IFM media for down-level instances) According to be this is an error/mistake in the product as RODCs requires Windows Server 2003 forest functional level (FFL) and not DFL – furthermore there is no issues performing RODC IFM media while the DFL is in Windows 2000 Native for example and then rise the FFL to Windows Server 2003 and introduce a RODC using that media created prior to that the FFL was Windows Server 2003.

Experienced administrators can actually by pass this check, but I won’t include those steps here.

This command can be performed on a full/writable DCs as well Read-Only DCs This IFM media can only be used to promote RODCs
(Technically unless instanceType is changed recursive on all NCs)
RODC IFM with SYSVOL Same as above +

Note: The full SYSVOL tree will be copied to the IFM media, except DfsrPrivate Folders.

This command can be performed on a full/writable DCs as well Read-Only DCs This IFM media can only be used to promote RODCs
(Technically unless instanceType is changed recursive on all NCs)

Once the snapshot is performed by the VSS writers, the snapshotted volumes are mounted. There would be one mount point entry for each drive that contains one of the following:

  • NTDS.dit – Active Directory Database
  • Log Files – Active Directory Database Log files (Technically never included/copied to the IFM media, but needed by the NTDS writer itself).
  • Registry – The SYSTEM and the REGISTERY hives (Those are not copied for Read-Only Domain Controller IFM or rifm)
  • SYSVOL – SYSVOL is only included if request (Full IFM with SYSVOL or RODC IFM with SYSVOL)

That means if all of the above (A,B,C,D) are located at the C: drive, there will only be one mount point for the C: drive mounted, once one or more mount points has been created, the data listed in (A,B,C,D) are copied over to the following structure:

Table 3: IFM on disk structure

Folder Name

Content

Active Directory NTDS.dit – Active Directory database
Registry SYSTEM and SECURITY – registry hives (Except for RODCs)
SYSVOL The full SYSVOL tree – only if requested in NTDSUTIL


Conversations taking place in DCPROMO for Read-Only Domain Controllers.

If a Read-Only Domain Controller (RODC) is being promoted using a RODC media generated from a full DC the following conversations has to take place.

  1. The attribute msDS-hasMasterNCs are moved into msDS-hasFullReplicaNCs
  2. The binary portion of msDsHasInstantiatedNCs is changed from indicating to have writable NCs instanced to have none-writable NCs instanced.
  3. Update msds-NCType:
    1. Schema NC are updated to contain: NCT_SPECIAL_SECRET_PROCESSING
    2. Domain, Configuration NC and any hosted NDNCs are updated to contain: NCT_SPECIAL_SECRET_PROCESSING | NCT_FILTERED_ATTRIBUTE_SET
    3. On any partial NCs (If the DC the IFM was sourced from was a Full DC and GC) are updated to contain: NCT_FILTERED_ATTRIBUTE_SET

Note: Those conversations are only necessary when a RODC is being promoted by IFM media that was converted from a full DC.

Preventing an invalid database to be used by IFM

There are several checks taking place during a DCRPOMO IFM to determine that the database that is used during IFM is valid according to a few rules.

  1. Preventing a Read-Only Domain Controller (RODC) promotion using a none-converted IFM media from a full DC: This is prevented by looking at the instanceType at the domain NC head, If it contains it WRITE flag and a promotion of an RODC is in progress, the promotion fails with: The Install-From-Media promotion of a Read-Only DC cannot start because the specified source database is not allowed. Only databases from other RODCs can be used for IFM promotion of a RODC. (8200)
  2. Preventing a Full/Writable Domain Controller (DC) promotion using a RODC IFM media: This is prevented by looking at the instanceType at the doman NC head, if it doesn’t contain the it WRITE flag and a promotion of a Full/Writable DC is in progress the promotion fails with an error similar to the one above.
  3. If the schema version in the IFM media database used to promote the DC is different from the local machines schema.ini, the builds between the source and the current operating system the IFM media is being used on are considered a mismatch and the promotion will fail.

Preventing secrets to sneak into Read-Only Domain Controller (RDOC) being promoted using IFM

Even if the NTDSUTIL tool makes sure that IFM produced for Read-Only Domain Controllers (RODCs) are completely removed from secret attributes, hidden attributes and attributes that contain the “Filtered Attribute Set” flag, In fact the columns representing those attributes in NTDS.dit and the ‘datatable’ are actually completely removed, and any linked attributes that contain the “Filtered Attribute Set” flag will have their rows deleted from the ‘link_table’.

Note: Those are all physical deleted and don’t end up in the Deleted Objects container in either the IsDeleted or IsRecycled state.

DCPROMO performs an additional check, and ensure that no secrets are present in the NTDS.dit while a RODC is being promoted from IFM, if there is columns in the databse representing any secrets (as mentioned above) those will be deleted.

A final solution to make sure that if there are any secrets left in the DB, the last allocated USN to the database before it was IFM’ed are stored as in every database in the ‘hiddentable’ in the ‘usn_col’ column.

(After that the DB is fully initialized and accepts updates again, new USNs are allocated and this is reflected in the ‘usn_col’) However prior to that the Directory System Agent (DSA) accepts updates again, the value in the ‘usn_col’ are copied over to a new column named ‘usnatrifm’ this column will maintain the USN prior to the promotion of the DC using the IFM media, and remain the same as it was when the IFM media was produced for the entire life time of the database (until the DC is demoted)

This allows replication of secrets to compare the ‘usnatrifm’ with the metadata of the attribute containing the secret being replicated in, if that USN has a higher value than the ‘usnatrifm’ column, the current secret in the database is considered not cached (consider to not be valid) and will be replicated in/writing over the old secret that made it in with the IFM.

The reason for why the ‘usnatrifm’ has to remain for the entire life time of the DC is that secret caching happens on-demand meaning that a secret may made it in with IFM for user account ‘ChristofferA’ and ‘ChristofferA’ moves into the branch where the RODC is placed and authenticates 5 years after it was promoted.

How install from media (IFM) really works (Part 1)

This is the first blog post in a series of posts covering how the “Install from media” feature really works, it’s an in-depth very technical post that explains what happens under the hood and this first part focuses on how it works in Windows Server 2003.

Background

Install from media was first introduced in Windows Server 2003, as a solution to improve the installation experience of newly promoted domain controllers in branch offices mainly (or sites with slow-links where the initial replication could take significant time to complete), but it is actually an important component in many disaster recovery plans I have designed for various customers over the years, As it is a fast and efficient way to re-install a domain controller and get it up to sync, (that’s the proper way to handle a faulting replicas/domain controllers in most cases). There is some common misunderstandings of the concept “Install from media” I terms of if the operation could be performed entirely offline or online, the short answer is: No. It can’t be performed offline; you have to be online with at least one writable domain controller in the same domain as the IFM source is taken from and even then you may not be able to be fully efficient and cause replication to happen over the network anyway, this need some future explanation.

What dose Install from media (IFM) consist of

Install from media (IFM) contains two important things.

  • NTDS.DIT (Active Directory Database) – at the time the IFM is generated (Regardless of Windows Server 2003, Windows Server 2008 or later –the NTDS.dit is pretty much unchanged until DCPROMO makes a lot of changes at the becoming domain controller that takes use of the database – it will change the DSA reference and update related “instance specific” information in the hidden table )
  • SYSVOL (SYSVOL GPT Storage)
  • Registry (Contains the SYSKEY used to decrypt the PEK (also known as Password Encryption Key) that efficiently ensure that the protection for sensitive information stored in the Active Directory database (Such as Password Hashes) are unique to each instance of the database (read each domain controller) –Note: This doesn’t apply to RODCs .

Sourcing install from media (IFM) using System State and VSS

Sourcing the media used by IFM is different in Windows Server 2003 (all versions) and Windows Server 2008 and later, the difference is the technology used to gather information required.

  • Windows Server 2003 IFM media is generated by performing a system state backup, the reason for this is that we can get a copy of ntds.dit while we’re up and running DsIsNTDSOnline=True (Active Directory is operational) this is archived by the DsBackup API: http://msdn.microsoft.com/en-us/library/ms675896(VS.85).aspx.We will also get a copy of SYSVOL since a system state backup contains the following:
    • Active Directory
    • The SYSVOL tree
    • The Boot.ini file
    • The COM+ class registration database
    • The registry

    To be more specific the following is required in the system state in order to be able to source IFM:

    • Active Directory is required.
    • The SYSVOL tree may be optionally removed. (A specific configuration is required to source the SYSVOL tree during IFM promotion)
    • The Boot.ini file may be removed.
    • The COM+ class registration database may be removed.
    • The registry folder is required. Registry components are required as follows:
      • The Default file in the Registry folder may be removed.
      • The SAM file is required.
      • The SECURITY folder is required.
      • The SOFTWARE file may be removed.
      • The SYSTEM file is required.

    We’re are responsible for doing a restore of a system state backup or selves to an alternative location, and ensure we gather the required information above. (Optionally if we care about disk size optimization we can not only select the specific components required in the system state backup, but we could also perform a offline defragmentation of the ntds.dit database)

    We can only use IFM to promote domain controllers in the same domain as we sourced it from, as well the target domain controller has to be running the same operating system, including service pack and architecture (x86/x64)

    Sourcing the NTDS.DIT – Active Directory database from IFM in Windows Server 2003

    As explained earlier in this article the Active Directory database (NTDS.dit) is being backup either by the DsBackup API or VSS API – The Active Directory database are unique to each DC and contains the NCs hosted by the DC typically Domain, Schema, Configuration and in some cases NDNC’s also known as application partitions such as DomainDNSZones and ForestDNSZones, if the DC is also a GC it will contain partial information about every object in all domain NCs in the entire forest (a multiple domain forest) – even thou if a DC are a GC in a single domain environment, the domain NC is only stored once in the database, if the sourced database was a GC, the computer being promoted to a DC using the source will also become a GC.

    During the backup itself (even if the intent are for IFM) – No changes are made to the database except setting the backup expiration date and backup usn in the hidden record. (Also known has the hidden table). Changes are instead modified/adjusted during DCPROMO on the computer that are about to become a DC using the sourced database from IFM.

    Before we can have an in-depth look at the changes that take place inside the Active Directory database during IFM we need to understand the physical layout of the database and some key concepts. (Note: For the purpose of this article the NTDS.dit physical layout will be rather simplified than the real/exact layout for display purposes)

    The Active Directory database (NTDS.DIT) contains the following tables.

    Table 1: NTDS.DIT Database Layout (Simplified Version)

Table

Description

datatable Contain: Domain, Schema, Config and NDNCs as well partial NCs and basically every object and phantom.
hiddentable Contains the DSA identity and various related information
linktable N/A – Out of scope for this article
quota_rebuild_progress_table N/A – Out of scope for this article
quota_table N/A – Out of scope for this article
sdproptable N/A – Out of scope for this article
sd_table N/A – Out of scope for this article
  • Ensure the database isn’t out-dated aka older than Tombstone Life Time (TSL)
    During DCPROMO the sourced IFM database are verified that it hasn’t passed the Tombstone Life Time (TSL) in the forest, if the database is older than the TSL, the promotion is aborted. This is more specifically measured against the object who had the last USN Change and it’s when-changed date.
  • Change/Adjust the DSA – Directory Service Agent IdentityThe “hiddentable” also known as the hidden record contains the identity of the local DSA – Directory Services Agent (DC) hosting the instance of the database, this identity points to the DCs NTDSA object within the directory stored within the “datatable”, the ntdsa object in its turn contains necessary information such as the DMD to be able to read the schema and soon. (I will write another article on how this works – more in detail). When it comes to IFM, the DSA identity stored in the hidden record/hidden table still points to the identity of the DC the IFM was sourced from, this cause an issue.The following illustrates the relationship between the DSA identity in the “hiddentable” and the NTDS Settings object stored in the “datatable” – that’s actually the NTDS Settings object you will see under the server object in Active Directory Sites and Services.

    Table 2: NTDS.DIT “datatale” (Simplified Version)

    So in this example NTTEST-SCH-01 is the DC where we sourced the IFM (backed up the database) – Now how do we get the new identity of the computer being promoted to a DC using the sourced IFM media? Well the new DSA for the computer being promoted is actually created remotely during DCPROMO on another DC (at the DC we perform the initial replication with, specified in the unattended answer file as “ReplicationSourceDC” parameter) , before we can change the record in the “hiddentable” to point to it – we must replicate in the newly created DSA by replicating the Configuration NC – this can cause an issue by itself – If we’re preforming the initial replication with the DC we sourced the IFM from, we’re temporarily presenting us self as the very same DC and replication will fail.

    So how are this solved? We’re creating a temporary “dummy” DSA with a corresponding server object in the database, retire invocation IDs, copying all references to NCs hosted by the old DSA (Doing not will have KCC to trigger a deletion of those sourced NCs later on), the temporary “dummy” DSA are created in the any site and the first site in alphabetical order identified.

    Now we can re-initialize and successfully replicate in the remotely created DSA by replicate the configuration NC using the temporary “dummy” DSA identity, retire invocation IDs, copying all references to NCs hosted by the temporary “dummy” DSA (Doing not will have KCC to trigger a deletion of those sourced NCs later on) we can now remove the temporary “dummy” DSA and store the real identity of the computer being promoted in the “hiddentable”

    We can now re-initialize as our self’s with our real DSA identity and continue processing.

  • Remove None-Replicated attributes from the database.
    Non-replicated attributes (Containing bit 0x00000001 in System-Flags) , such as badPwdCount, Last-Logon, and Last-Logoff are stored on each domain controller, but are not replicated. The non-replicated attributes are attributes that pertain to a particular domain controller, as those attributes contains local information associated with the DC that the IFM was sourced from, those are deleted except the following:
  1. DS-Core-Propagation-Data: http://msdn.microsoft.com/en-us/library/ms675655(v=VS.85).aspx
  2. Obj-Dist-Name: http://msdn.microsoft.com/en-us/library/ms675516(v=VS.85).aspx
  3. ms-DS-ReplicationEpoch: http://msdn.microsoft.com/en-us/library/ms677478(v=VS.85).aspx
  4. Object-GUID: http://msdn.microsoft.com/en-us/library/ms679021(v=VS.85).aspx
  5. Partial-Attribute-Deletion-List: http://msdn.microsoft.com/en-us/library/ms679106(v=VS.85).aspx
  6. Partial-Attribute-Set: http://msdn.microsoft.com/en-us/library/ms679107(v=VS.85).aspx
  7. Prefix-Map: http://msdn.microsoft.com/en-us/library/ms679371(v=VS.85).aspx
  8. Repl-Property-Meta-Data: http://msdn.microsoft.com/en-us/library/ms679448(v=VS.85).aspx
  9. Repl-UpToDate-Vector: http://msdn.microsoft.com/en-us/library/ms679450(v=VS.85).aspx
  10. Sub-Refs: http://msdn.microsoft.com/en-us/library/ms679895(v=VS.85).aspx
  11. USN-Changed: http://msdn.microsoft.com/en-us/library/ms680871(v=VS.85).aspx
  12. USN-Created: http://msdn.microsoft.com/en-us/library/ms680924(v=VS.85).aspx
  13. When-Changed: http://msdn.microsoft.com/en-us/library/ms680921(v=VS.85).aspx
  14. Pek-List: http://msdn.microsoft.com/en-us/library/ms679109(v=VS.85).aspx
  15. msDS-NcType: http://msdn.microsoft.com/en-us/library/cc220312(v=prot.10).aspx
    • Decrypt and Re-encrypt the Password Encryption Key (PEK)
      Secret Data stored within the Active Directory database (NTDS.DIT) such as the password hashes are additionally protected by a Password Encryption Key (PEK) – the PEK are encrypted by the SYSKEY of the DC and are therefore unique to each DC, the sourced NTDS.dit from the IFM contains a PEK encrypted by the SYSKEY from the DC on which the IFM was generated (the computer where the NTDS.dit was backed up). DCPROMO will decrypt the PEK using the SYSKEY (from the DC the IFM was sourced from) from the registry in the restored IFM information as the SYSKEY are stored in the registry (that’s one reason why we need to include parts of the registry in IFM) and then re-encrypt the PEK with the SYSKEY of the computer being promoted to DC.

 

  • Diagnostics and Logging
    IFM promotions can be identified in the Dcpromo.log and Dcpromoui.log files that are located in the %systemroot%debug folder. There are several entries that can be used to verify that the database where sourced from the IFM and that the promotion did use IFM.

    Table 3: DCPROMO.log

DCPROMO.log

07/03 06:35:29 [INFO] Copying restored Active Directory files from C:IFM_MEDIAActive Directoryntds.dit to C:WINDOWSntdsntds.dit…
07/03 06:35:29 [INFO] Copying restored Active Directory files from C:IFM_MEDIAActive Directoryedb00001.log to C:WINDOWSntdsedb00001.log…
07/03 06:35:29 [INFO] Active Directory is initializing the restored database files. This might take several minutes.

Table 4: DCPROMOUI.log

DCPROMOUI.log

dcpromoui AAC.AB0 0271 Enter State::ReplicateFromMedia true
dcpromoui AAC.AB0 0272 Enter State::GetReplicationSourcePath C:IFM_MEDIA

Sourcing NDNCs with Windows Server 2003 is only supported by Windows Server 2003 SP1 or later under the following conditions:

  • Both the DC your souring the IFM from must be running Windows Server 2003 SP1 or later and as well the machine intending to become a DC using the source IFM.
  • The forest functional level (FFL) has to be: Windows Server 2003 (Pre-Windows Server 2003 FFL adding replicas to NCs has to be done on the Domain Naming Master – FSMO)
    Note: The promotion completes with the sourced IFM even if the forest functional level (FFL) is less than Windows Server 2003 but NDNCs aren’t sourced from the IFM and the following will happen:
  1. The following will be logged in the Directory Services Log: “The forest functional level is not high enough to complete addition of application directory partitions during installation of the directory. Therefore specified application directory partitions will not be added to this domain controller during installation. If you would like to make this server a replica of an application directory partition, you could re-add these application partition after the installation is complete.”
  2. The following will be logged in the Directory Services Log, and the DC will begin the process of physically removing the NDCs source from the IFM in the DCs database: “The local domain controller is no longer configured to host the following directory partition. As a result, the objects in this directory partition will be removed from the local Active Directory database.” Note: In this case the DomainDNSZones and ForestDNSZones NDNCs.
  3. The DomainDNSZones and ForestDNSZones are begin replicated in again over the wire using normal replication, as the promoted DC (Sourced from IFM) hosts the DNS Service: As a result of this the DC (Sourced from IFM) has to obtain a new invocationID once again (It has already done this once for using the sourced IFM database instance):
    Note: This can be confirmed by running the repadmin /showsig command

    Default-First-Site-NameNTTEST-SCH-02

    Current DC invocationID: 7bbd4543-cf19-44e3-9638-96907ceb8a36 ß Current InvocationID obtained cause of removing/adding NDCs.

    28081325-eee8-40b0-9587-9c02867040bc retired on 2011-07-03 07:16:41 at USN 32780 ß New InvocationID representing the sourced IFM restored/promoted as a new instance on the current DC

    b7633426-242b-47bf-852c-a07466ef937f retired on 2011-07-03 06:35:39 at USN 16397ß InvocationID representing the instance on the DC where the IFM where sourced

  • You have to use an unattended answer file specifying the ReplicateFromMedia=Yes parameter as well define the ApplicationPartitionsToReplicate parameter, note this can be used to include specific NDNCs or you can simply include them all by specific a wildcard, Here are some samples:
    • ApplicationPartitionsToReplicate=*
    • ApplicationPartitionsToReplicate=”DC=DomainDNSZones,DC=corp,DC=company,DC=com” “DC=ForestDNSZones,DC=corp,DC=company,DC=com”

Sourcing SYSVOL with IFM at Windows Server 2003:

The File Replication Service (FRS) can source files and folders from the restored system state backup on the first restart after a DCPROMO IFM promotion if the strict dependencies that the File Replication Service (FRS) requires are fulfilled.

  • The system state backup must contain MD5 checksum data that is used by the File Replication Service (FRS) to determine if a restored file or folder is the same as the file versions on existing domain controllers in the domain.
  • The File Replication Service (FRS) must have constructed MD5 checksum data for the files in the SYSVOL tree.
    For MD5 checksums to exist, files and folders in the SYSVOL tree must have been replicated at least one time after there were two or more domain controllers in the domain (Note: The SYSVOL can never be efficiently sourced from a IFM media also known as System State Backup in Windows Server 2003 unless there is at least two DCs in the domain already present at the point when the IFM media also known as System State Backup is generated). You can trigger FRS to store the MD5 checksum of all files in the SYSVOL tree my writing a script that modifies the files, for example set/un-set the hidden attribute, that simply will tiger a replication.Furthermore the MD5 checksum data is stored in ntfrs.jdb ESE database that’s by default located in “%SystemRoot%ntfrsjet”. The ntfrs.jdb ese database are using 4k pages and have the following layout.Table 5: NTFRS.JDB Database Layout
Table

Columns

ConfigTable N/A – Out of scope for this article
CXTIONTable00000 N/A – Out of scope for this article
CXTIONTable00001 N/A – Out of scope for this article
DIRTable00000 N/A – Out of scope for this article
DIRTable00001 N/A – Out of scope for this article
IDTable00000 FileGuidFileID

ParentGuid

ParentFileID

VersionNumber

EventTime

OriginatorGuid

OriginatorVSN

CurrentFileUsn

FileCreateTime

FileWriteTime

FileSize

FileObjID

FileIsDir

FileAttributes

Flags

ReplEnabled

TombStoneGC

OutLogSeqNum

Spare1Ull

Spare2Ull

Spare1Guid

Spare2Guid

FileName

Spare1Wcs

Spare2Wcs

Spare1Bin

IDTable00001 N/A – Out of scope for this article
INLOGTable00000 N/A – Out of scope for this article
INLOGTable00001 N/A – Out of scope for this article
OUTLOGTable00000 SequenceNumberFlags
IFlags
State
ContentCmd
Lcmd
FileAttributes
FileVersionNumber
PartnerAckSeqNumber
FileSize
FileOffset
FrsVsn
FileUsn
JrnlUsn
JrnlFirstUsn
OriginalReplica
NewReplica
ChangeOrderGuid
OriginatorGuid
FileGuid
OldParentGuid
NewParentGuid
CxtionGuid
Spare1Ull
Spare2Ull
Spare1Guid
Spare2Guid
EventTime
FileNameLength
Spare1Wcs
Spare2Wcs
Spare1Bin
Spare2Bin
FileName
OUTLOGTable00001 N/A – Out of scope for this article
VVTable00000 N/A – Out of scope for this article
VVTable00001 N/A – Out of scope for this article

The MD5 checksum are stored in the IDTable0000X and are stored in the column Spare1Bin.
You can validate the existence of MD5 checksums by using “ntfrsutil idtable > MD5Hash.txt” and search for entries missing hashes.


Table 6: NTFRS.JDB IDTable

IDTable

Table Type: ID Table for DOMAIN SYSTEM VOLUME (SYSVOL SHARE) (1)
FileGuid : 790adf00-7709-447d-9a756b655931151b

FileID : 00030000 00002bb9
ParentGuid : 9fe6d1af-dac8-40be-bd06e6030f4a6ae0

ParentFileID : 00050000 00002874

VersionNumber : 00000003

EventTime : Sun Sep 11, 2005 03:36:18

OriginatorGuid : 5ab8b3e3-27e8-4c9e-a5e152246f57df61

OriginatorVSN : 01c5b0b1 ad0a2413

CurrentFileUsn : 00000000 011a3e88

FileCreateTime : Sun Aug 7, 2005 23:40:01

FileWriteTime : Sun Sep 11, 2005 03:36:18

FileSize : 00000000 00002000

FileObjID : 00000000-0000-0000-0000000000000000

FileName : CorpLogon.vbs

FileIsDir : 00000000

FileAttributes : 00000020 Flags [ARCHIVE ]

Flags : 00000000 Flags [<Flags Clear>]

ReplEnabled : 00000001

TombStoneGC : Sun Aug 7, 2005 23:42:01

OutLogSeqNum : 00000000 00000000

Spare1Ull : 00000000 00000000

MD5CheckSum : MD5: b9552637 1973e4d6 84dd6de7 f3125a64

RetryCount : 0

FirstTryTime :
Table Type: ID Table for DOMAIN SYSTEM VOLUME (SYSVOL SHARE) (1)
FileGuid : 127f0701-7e51-4624-b0ef801fa93bb925

FileID : 00040000 00002b7f

ParentGuid : 8bebf734-7fd2-4d66-b8548820dcb17bad

ParentFileID : 00020000 00002b7b

VersionNumber : 0000000b

EventTime : Fri Nov 13, 2009 14:46:45

OriginatorGuid : 5ab8b3e3-27e8-4c9e-a5e152246f57df61

OriginatorVSN : 01c96785 4bd8b2c5

CurrentFileUsn : 00000001 df606a48

FileCreateTime : Sat Aug 6, 2005 23:27:54

FileWriteTime : Fri Nov 13, 2009 14:46:45

FileSize : 00000000 00000020

FileObjID : 127f0701-7e51-4624-b0ef801fa93bb925

FileName : gpt.ini

FileIsDir : 00000000

FileAttributes : 00000020 Flags [ARCHIVE ]

Flags : 00000000 Flags [<Flags Clear>]

ReplEnabled : 00000001

TombStoneGC : Sat Aug 6, 2005 23:28:01

OutLogSeqNum : 00000000 00000000

Spare1Ull : 00000000 00000000

MD5CheckSum : MD5: 959cfc82 54e6ccbf 3dc74a29 7fe46a42

RetryCount : 0

FirstTryTime :

  • The SYSVOL part of the IFM media also known as the System State Backup must be restored to the same volume that is chosen to host the SYSVOL tree when you run DCPROMO, or it has to be specified to the same value in your unattended answer file.


Seeding the SYSVOL with IFM at Windows Server 2003:

Even if the SYSVOL are sourced with IFM delta changes are about to be replicated in over the network, there are certain requirements to ensure that this process are being efficient and that not the entire SYSVOL tree are replicated over the network again, once of the requirements has already been discussed in this article regarding MD5 checksums: The File Replication Service (FRS) must have constructed MD5 checksum data for the files in the SYSVOL tree.

The Domain Controller (DC) or File Replication Service Replica (FRS Replica) that the initial replication of the SYSVOL tree takes place with must meet the following requirements

  • The Domain Controller (DC) or File Replication Service Replica (FRS Replica) that the initial replication takes place with are identified by specifying the “ReplicationSourceDC” parameter in the unattended dcpromo answer file. (Note this can’t be done using the UI)

    How to best select the Domain Controller (DC) or File Replication Service Replica (FRS Replica) to perform initial replication with:

    • Locate a domain controller that has a low number of inbound and outbound connections. This domain controller must not be a significant originator or forwarder of change orders to downstream partners in SYSVOL or FRS-replicated DFS replica sets
    • Locate a domain controller that doesn’t act as Bridgehead server (those typically have many replication partners)
  • The File Replication Service (FRS) outbound log on the DC/FRS replica that is used to seed the SYSVOL tree with must be cleared so that a full vvjoin is triggered when the initial synchronization of SYSVOL with the IFM promoted DC occur, the reason for this is that if the outbound log contain cached items, an optimized vvjoin is performed and optimized vvjoin’s doesn’t support pre-staging content, this results in a full replication of the entire SYSVOL tree over the network with the IFM promoted DC instead of delta changes and new files.

    How to verify and clear the outlog:

    • At the intended helper DC (DC chosen to perform initial replication with) run:
      ntfrsutil outlog to show current entries in the outlog change cache.
      Note: See Table 5: NTFRS.JDB Database Layout for the outlog table layout earlier in this article
    • If the ntfrsutil outlog show’s entries, the outlog needs to be trimmed/reset or if the period of time specified as the “Outlog Change History in Minutes” (by default 7 days) has passed since the IFM media was generated.
      Changes the Outlog Change History In Minutes value in the following registry subkey:
      HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesNtFrsParameters to 0 (zero)
    • Run ntfrsutl poll /now
    • Restart the FRS Service on the actual DC/FRS replica: net stop ntfrs | net start ntfrs
    • Run the ntfrsutil outlog again, the contents of the current outbound log must contain only files that have been modified after you changed the registry and restarted the FRS.

      Note: Don’t forget to reset the Outlog Change History In Minutes registry type back to the seven-day default while you’re done with the IFM operations (e.g. all DCs intended to be promoted with IFM has been promoted)

  • Configure Debug and Analysis logging on the computer that is to be promoted using IFM

    Configure Debug Severity on the computer that is about to be promoted using IFM media:

    • To be able to determine whether files in the SYSVOL tree are being moved in from the pre-staged folder on the local computer or are being replicated over the network from an upstream partner, set the registry value for Debug Log Severity to 4 on the computer being promoting using IFM media in the following registry subjey:
      HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesNtFrsParameters to 4
      Note: This has to be configured before you promote the computer to a DC using IFM.
    • Verify whether the files in the SYSVOL tree was seeded from the pre-stage folder (the restored IFM media) or replicated over the network.

To find all the files that were replicated from the initial replication partner over the wire (files that wasn’t seeded from IFM), type:

findstr /I “RcsReceivingStageFile” NtFrs_000X.log where X should be the number of the log, in case if multiple logs e.g. NtFrs_0001.log, NtFrs_0002.log etc run the command against both files.

To find all files that were sourced from the pre-staged system state backup, type:

Findstr /I “(218)” NTFRS_000X.log where X should be the number of the log, in case if multiple logs e.g. NtFrs_0001.log, NtFrs_0002.log